检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《微电子学与计算机》2009年第1期151-154,158,共5页Microelectronics & Computer
基 金:山东省自然科学基金项目(2004ZX17)
摘 要:独立任务调度问题是分布式系统中的一个NP难题.提出了基于实数编码和基于机器编码的两种改进粒子群算法.前者利用协同子群进化的方式进行问题寻优,后者通过重新定义粒子的位置更新方法,使粒子群算法更好地应用于组合优化问题.仿真结果表明,与遗传算法和基本粒子群算法相比,改进算法具有更快的收敛特性和更好的求解质量.The independent task scheduling problem is known to be NP-complete in the field of distributed processing. Two particle swarm optimization (PSO) algorithms are presented, which are PSO with real number-based representation and PSO with machine-based representation. The former algorithm finds global optimization through co-evolution of subswarms, while the latter one can be used in combinatorial optimization finds better by redefining the updating formula of particle positions. The experimental results compared with genetic algorithm and basic PSO algorithm manifest that the improved algorithms improve not only the speed of convergence, but also the quality of solutions.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.185.164