检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学数学系,上海200092
出 处:《哈尔滨工程大学学报》2008年第12期1352-1355,共4页Journal of Harbin Engineering University
基 金:国家重点基础研究发展计划基金资助项目(2007CB814903)
摘 要:为了研究连续支付分期付款美式期权的定价问题,以看涨期权为例,采用对冲的方法建立了此类期权定价的偏微分方程模型.模型中的方程是一个非齐次的Black-Scholes方程,其非齐次项为期权的分期付款率.根据金融意义,连续支付分期付款美式期权的定价问题是一个自由边界问题,含有最佳终止边界和最佳实施边界2条自由边界,从而把偏微分方程模型转化为相应的变分不等方程模型,然后用有限差分方法给出了此类期权价格的数值解,并分析了不同参数值的情况下最佳终止边界和最佳实施边界的位置及性质.结果表明看涨期权的最佳终止边界单调非减,而最佳实施边界则单调非增.In order to pricing American style continuous installment options, hedging was used to establish a Partial Differential Equation (PDE) model for call options. The PDE inthe model is a nonhomogeneous Black Scholes equation. The nonhomogeneous term is the installment rate. In the financial field, the problem can be expressed as a free boundary problem with two free boundaries: the optimal stop boundary and the optimal exercise boundary. Then the PDE model can be transformed into a variation inequality prob lem. By using the finite-difference method, some numerical results were obtained and displayed. The optimal stop boundary and the optimal exercise boundary were calculated and analyzed with different parameter values. The results show that the optimal stopping boundarg of call option is monotone and not decreasing, while the optimal exercise boundary is monotone and not creasing.
关 键 词:分期付款期权 连续支付美式分期付款期权 最佳终止边界 最佳实施边界 变分不等方程
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49