检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘进[1] 文志宁[1] 覃洁萍[2] 王丽丽[2] 李梦龙[1]
机构地区:[1]四川大学化学学院,四川成都610064 [2]广西中医学院,广西南宁530001
出 处:《化学研究与应用》2009年第1期81-84,共4页Chemical Research and Application
基 金:国家973计划资助项目(2007CD512602)
摘 要:本文研究支持向量机用于中药药性识别的可行性。选择7种无机元素在中药中的含量为指标,运用支持向量机对193种不同药性的中药进行训练,建立平性与非平性中药的预测模型。结果训练集识别正确率95.03%,建立的模型对预测集中平性药的识别正确率为82.14%,对非平性药的识别正确率为70%,总正确率为73.58%。In this paper, the feasibility of application of support vector machines to Traditional Chinese Medicine (TCbf)property recognition was studied. The amount of 7 inorganic elements in TCM were selected as index, 193 kinds of TCM of different properties were trained through support vector machines so as to establish the neutral and non-neutral property of TCM prediction model. The recognition accuracy of training, set was 95.03%. Of the established model, the recognition accuracy for the neutral medicine in prediction set was 82.14% ,and 70% for non-neutral medicine, which made up an accuracy of 73.58% in total.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222