检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉理工大学道路桥梁与结构工程湖北省重点实验室,武汉430070 [2]淄博市规划设计研究院,淄博255037
出 处:《武汉理工大学学报》2009年第1期54-58,共5页Journal of Wuhan University of Technology
基 金:国家自然科学基金重点项目(50830203);国家自然科学基金面上项目(50678142)
摘 要:给定形状裂纹的SIF(应力强度因子)可以通过各种数值方法确定,但裂纹扩展过程中裂纹形状不断发生变化,对任意时刻所对应的裂纹进行全三维分析确定裂纹前缘应力强度因子不现实且难以实现。通过采用有限元法事先计算各种不同形状、尺寸的桅杆结构纤绳连接拉耳孔边裂纹前缘表面点及最深点处的应力强度因子及无因次形状因子,然后对基本数据进行多参数拉格朗日插值的方法来求解拉耳任意形状孔边裂纹的应力强度因子。并对某一形状裂纹的应力强度因子插值计算结果与有限元直接分析结果进行了对比,结果表明插值法具有较高的可靠性,可用于应力强度因子的近似计算。The stress intensity factor of any given shape crack can be determined by all kinds of numerical methods, but the shape of crack is changing during the period of propagation. It is a hard labor and could not be carried out easily to obtain the stress intensity factors of each time interval with 3-D dimensional analysis. This paper has calculated the stress intensity factors and no dimensional shape factors of the surface point and the depth point on the crack front of crack at hole of different shapes, sizes of ear plate for cable connecting ear plate on guyed mast structure. The stress intensity of any shape crack at hole can be acquired by the Lagrange interpolation method basing on those basic data. Moreover, a comparison for stress intensity factor has been made between the interpolation solution and the solution of finite element analysis for a certain shape crack at hole. The result shows that the interpolation method has a high reliability and can be used to calculate stress intensity factor similarly.
关 键 词:孔边裂纹 SIF(应力强度因子) 无因次形状因子 拉格朗日插值
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143