检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:滑荣[1] 韩建国[1] 齐晓[1] 聂志东[1] 李博[2]
机构地区:[1]中国农业大学草地研究所,北京市重点实验室,北京100094 [2]农业生物技术国家重点实验室,北京100094
出 处:《光谱学与光谱分析》2008年第12期2826-2829,共4页Spectroscopy and Spectral Analysis
基 金:农业部“948”滚动项目“优质草产品生产加工技术”(2006-G38);北京市教育委员会共建科研项目(XK100190552;JD100190531)资助
摘 要:研究旨在探讨利用紫花苜蓿草颗粒样品的近红外漫反射光谱信息,建立能够预测其营养价值的校正模型。采集22份全株草颗粒、19份茎颗粒、19份叶颗粒共60份紫花苜蓿草颗粒样品,其中建模样品45份,检验样品15份。利用傅里叶变换近红外漫反射光谱技术(FT-NIRS)采集各实验样品的近红外漫反射光谱,运用偏最小二乘法(PLS)建立了紫花苜蓿草颗粒粗蛋白(CP)、中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)含量的预测模型。3个预测模型的校正模型建模效果均较好,其交叉检验相关系数(RCV)为0.96410-0.96887,交互验证的残差均方根(RMSECV)为0.80%-2.59%。用15个检验样品对模型进行外部检验,预测相关系数(r)为0.9669-0.9743,外部验证的残差均方根(RMSEP)为0.85%-2.07%。所建模型的交叉检验和外部检验RPD均大于3,表明近红外光谱分析技术可以准确地预测紫花苜蓿草颗粒的营养价值。The present research aimed to predict the qualities of pelletized alfalfa by near infrared reflectance spectroscopy.Sixty pelletized alfalfa samples were collected,including 22 whole plant alfalfa samples,19 stem samples and 19 leaf samples.They were divided into a calibration sample set(45 samples) and a validation sample set(15 samples).The Fourier transform-near infrared reflectance spectroscopy(FT-NIRS) and the partial least square(PLS) were used to calibrate models of the pelletized alfalfa nutrition value,involving crude protein(CP),neutral detergent fiber(NDF) and acid detergent fiber(ADF) contents.All models had great calibration performances.The correlation coefficients of cross-validation(RCV) were between 0.964 10 and 0.968 87,and the root mean square errors of cross-validation(RMSECV) were between 0.80% and 2.59%.Fifteen validation samples were used to predict the performances of these models,all the correlation coefficients of NIRS value and chemical value(r) were between 0.966 9 and 0.974 3,and the root mean square errors of prediction(RMSEP) were between 0.85% and 2.07%.The RPD values of cross-validation and prediction were all above 3.The results showed that pelletized alfalfa's CP,NDF,ADF contents were exactly predicted by near infrared reflectance spectroscopy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15