检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]徐州师范大学计算机科学与技术学院,徐州221116 [2]中国矿业大学信息与电气工程学院,徐州221008
出 处:《计算机工程》2009年第1期165-167,共3页Computer Engineering
基 金:江苏省高校自然科学基础研究基金资助项目(07KJD520216);徐州师范大学校级培育基金资助项目(06PYL06)
摘 要:针对交互式遗传算法中收敛速度慢和容易陷入局部收敛的缺点,提出遗传算法算子的一些改进策略,即利用定位部分优良基因方法,使这些基因较好地遗传到下一代。改进的算法能有效减少无效的交叉操作,收敛速度、全局搜索能力和局部搜索能力比交互式遗传算法均得到了较大的提高。将改进的算法应用于服装设计中,实验结果证明了改进后的算法在平均收敛代数和收敛到最优解的概率都优于遗传算法。In order to effectively solve the disadvantages of Interactive Genetic Algorithm(IGA) which converges slowly and easily runs into local extremism, some improved strategies are proposed. The improved strategies which reserve some elitist genes can reduce useless crossover effectively and thus the convergence speed and the search capability are greatly improved when the Elitist Reserved Genetic Algorithm(ERGA) that keeps best strategies compared with IGA. The efficiency of the proposed method is analyzed, at the same time the improved algorithm is applied to fashion design and the simulation validates its efficiency. Experimental results show that the rapidity of convergence and the probability of the improved algorithm can be superior to GA.
关 键 词:交互式遗传算法 改进策略 早熟收敛 搜索空间 遗传算子
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112