检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州理工大学计算机与通信学院,兰州730050
出 处:《计算机工程》2009年第1期173-175,共3页Computer Engineering
基 金:甘肃省自然科学基金资助项目(ZS031-A25-015-G)
摘 要:神经网络的不可解释性一直是限制其发展的固有缺陷,该文从神经网络的功能性观点出发,提出基于免疫克隆选择算法的神经网络规则抽取方法。将免疫克隆策略用于神经网络的规则抽取中,对已经训练好的神经网络隐层神经元输出值进行聚类,缩小搜索空间,抽取出理解性好、简洁的符号规则。该方法不依赖于具体的网络结构和训练算法,可以方便地应用于各种分类器型神经网络。实验结果表明该方法的实用性和可行性。Neural Network(NN)'s incomprehensible quality is always an inherent defect that limits its self-development. This paper, from the functional point of view, describes a method that employs a ICS algorithm to extract rules from NN. The method uses tactics of immune clone in rules extraction from NN and clusters outputs of hidden neurons of NN, to reduce the searching scale and extract succinct sign rules of good understanding. The method can be used in all kinds of NN based classifier not depending on concrete net structure and training algorithm. The result of experiment shows its practicability and feasibility.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.21.218