检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学土木工程学院,西安710055
出 处:《建筑钢结构进展》2009年第1期49-53,共5页Progress in Steel Building Structures
基 金:陕西省重点实验室项目(05JS18)
摘 要:本文针对含微缺陷金属材料损伤理论进行几何拓扑,采用非完整标架的方法把金属材料内部微观几何缺陷拓扑为材料空间的弯曲,并体现在几何方程中。首先通过释放应力将平直Euclid空间缺陷物质流形与Riemann流形建立对应关系,给出Riemann流形中含微缺陷金属材料的应变、应力状态以及几何法则、静力平衡方程,将物理非线性问题转化为物理线性问题和材料空间弯曲之和。最后讨论了二维情况下金属材料受各向异性损伤的算例。The purpose of this paper is to translate defects of mental materials into geometrical defects with geometrical topological method. Firstly, the corresponding relation between Euclid Space with damage defect and Riemann Space is established. Then the strain state and the stress state in Riemann Space are presented with the geometrical law. So a physical nonlinear prohlem is departed into a physical linear problem together with a bending space. Finally, an example of anisotropic damage of metal materials in two-dimensions is discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28