含微缺陷金属材料损伤理论的几何拓扑  被引量:3

Topological Damage Theory of Metal with Defects

在线阅读下载全文

作  者:王云[1] 郝际平[1] 

机构地区:[1]西安建筑科技大学土木工程学院,西安710055

出  处:《建筑钢结构进展》2009年第1期49-53,共5页Progress in Steel Building Structures

基  金:陕西省重点实验室项目(05JS18)

摘  要:本文针对含微缺陷金属材料损伤理论进行几何拓扑,采用非完整标架的方法把金属材料内部微观几何缺陷拓扑为材料空间的弯曲,并体现在几何方程中。首先通过释放应力将平直Euclid空间缺陷物质流形与Riemann流形建立对应关系,给出Riemann流形中含微缺陷金属材料的应变、应力状态以及几何法则、静力平衡方程,将物理非线性问题转化为物理线性问题和材料空间弯曲之和。最后讨论了二维情况下金属材料受各向异性损伤的算例。The purpose of this paper is to translate defects of mental materials into geometrical defects with geometrical topological method. Firstly, the corresponding relation between Euclid Space with damage defect and Riemann Space is established. Then the strain state and the stress state in Riemann Space are presented with the geometrical law. So a physical nonlinear prohlem is departed into a physical linear problem together with a bending space. Finally, an example of anisotropic damage of metal materials in two-dimensions is discussed.

关 键 词:损伤理论 几何拓扑 微分几何 非完整标架 拟塑性应变张量 Riemann空间 

分 类 号:O346.5[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象