检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军信息工程大学信息工程学院,郑州450002
出 处:《计算机工程》2009年第3期80-82,共3页Computer Engineering
基 金:国家"863"计划基金资助项目(2007AA01Z439)
摘 要:针对影响主题检测性能的2个重要因素——相似主题的判定和主题漂移问题,提出一种基于自适应重心向量的主题检测方法。该方法将命名实体信息应用到特征表示上,将命名实体向量和关键词向量相结合表示主题的重心向量,以有效区分相似主题。采用增量聚类检测主题,在增量聚类过程中不断修正主题重心,以解决主题漂移的问题。实验结果与性能比较表明,该方法能有效提高主题检测的性能。Similar topic detection and topic excursion are two important factors which affect the performance of topic detection. For these two problems, this paper proposes a topic detection approach based on adaptive center vector. By using information of name-entity in feature representation, it combines name-entity vector and keyword vector to construct topic center vector, which can detect similar topic efficiently. Based on the idea of single-pass clustering, the algorithm modifies topic center dynamically. Experimental results show that the algorithm can improve the performance of topic detection effectively.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31