检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科学技术与工程》2009年第4期836-841,共6页Science Technology and Engineering
基 金:国家自然科学基金(60874063)资助
摘 要:对带未知噪声统计的多传感器系统,提出了基于相关方法的噪声统计在线估值器,进而提出了自校正Riccati方程和自校正Lyapunov方程。在按分量标量加权线性最小方差最优信息融合准则下,提出了自校正分量解耦融合Kalman滤波器,并用动态误差系统分析(DESA)方法证明了它收敛于最优分量解耦融合稳态Kalman滤波器,因而具有渐近最优性,它的精度比每个局部自校正Kalman滤波器精度高,且算法简单,便于实时应用。一个目标跟踪系统的仿真例子说明了其有效性。For the multisensor systems with unknown noise statistics,the on-line noise statistics estimators are presented based on the correlated method,and the self-tuning Riccati equation and Lyapunov equation are also presented. Under the linear minimum variance optimal information fusion criterion weighted by scalars for components , a self-tuning component decoupled fusion Kalman filter is presented, and it is proved by the dynamic error system analysis (DESA) method that it converges to the optimal component decoupled fusion steady-state Kalman filter,so that it has the asymptotic optimality. Its accuracy is higher than that of each local self-tuning Kalman filter,moreover algorithm is simple,and is suitable for real time applications. A simulation example for a target tracking system shows its effectiveness.
关 键 词:多传感器信息融合 解耦融合 RICCATI方程 噪声统计估计 自校正Kalman滤波器
分 类 号:O211.64[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.152.124