检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李国军[1,2] 周晓娜[2] 曾理[2] 林金朝[1,3]
机构地区:[1]重庆邮电大学,重庆400065 [2]中国人民解放军重庆通信学院,重庆400035 [3]重庆大学,重庆400044
出 处:《科学技术与工程》2009年第4期884-888,共5页Science Technology and Engineering
基 金:国家自然科学基金项目(60702055);重庆市科委科技攻关项目(CSTC,2008AB2023)资助
摘 要:在强噪声背景下,基于时频联合分析的高频CW信号检测算法性能严重下降,同时标准Kalman滤波器对非平稳背景噪声下微弱高频CW信号也失效。针对此问题,本文提出了一种基于ARMA新息模型的自适应Kalman滤波器检测方法。该方法避免了标准Kalman滤波检测CW信号时需要确定系统噪声统计特性的问题。论文根据CW信号的状态空间随机信号模型,构造了ARMA新息模型,通过在线辨识MA模型参数来估计Kalman滤波增益,从而实现了CW信号的自适应跟踪滤波。仿真结果表明,该方法能够在强噪声背景下动态跟踪CW信号时域波形,且算法简单,实时性强,可用于指导高频CW电报自动接收设备的研制。The method of time-frequency transformation and classical Kalman filter for detecting high-frequency CW signal have a noticeable decline in performance with heavy and non-stationary background noise. A new adaptive Kalman filter based on ARMA innovation model is designed to detect weak high-frequency CW signal in strong Non-stationary noise environments. The method avoids the shortcomings of classical Kalman filter which requires precise statistical characteristic of noise in system. The ARMA innovation model of CW signals is constructed first- ly, according to its state space random signal model. Then with the on-line identification of MA model parameters, the Kalman filter gain is estimated to implement the adpative Kalman filter of CW signals. Simulation studies show this method more efficient and simple in the detection of weak CW signal. The new method can be applied to develop automatic receiver of high-frequency CW telegraph signal.
关 键 词:微弱高频CW信号 非平稳噪声 ARMA新息模型 自适应Kalman滤波器
分 类 号:TN911.23[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69