检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦翰林[1] 周慧鑫[1] 刘上乾[1] 卢泉[1]
机构地区:[1]西安电子科技大学技术物理学院,陕西西安710071
出 处:《光学学报》2009年第2期353-356,共4页Acta Optica Sinica
基 金:教育部科学技术研究重点项目(108114)资助课题
摘 要:红外图像具有对比度低和信噪比低等特点,实用中必须进行增强处理。将小波分析与模糊逻辑相结合,提出了一种基于二代小波变换的红外图像非线性增强算法。该算法首先利用二代小波变换对图像进行分解,提取图像的多尺度细节特征,然后,根据目标和背景噪声信号的差异,通过模糊非线性增强算子分别对各个分解层的高频子带进行非线性增强来改变目标特征的强度,抑制背景信号,最后利用小波反变换重构图像,以实现图像的对比度增强和背景抑制。与几种常用的图像增强算法实验结果相比,此算法能有效地抑制图像中的背景噪声,增强目标内容信息,取得了较好的增强效果。Because infrared image has the characteristics of low contrast and low signal-to-noise ratio, it is necessary to be enhanced. A second-generation wavelet transform based infrared image nonlinear enhancement algorithm is presented. The method is adopted to decompose the input infrared image, which extracts multi-scale detail features of the image. Then, according to the difference between target and background noise signal, a fuzzy nonlinear enhancement operator is used to enhance the details of target feature intensity under different scale. Finally, the inverse transform of wavelet is applied to reconstruct image. The algorithm can avoid over-enhanced noise and raise image contrast. Compared with other several image enhancement algorithms, several groups of experimental results demonstrate that the presented algorithm enhance content information the infrared images target effectively.
分 类 号:TN219[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38