检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江西理工大学信息工程学院,江西赣州341000
出 处:《计算机应用与软件》2009年第2期266-269,共4页Computer Applications and Software
摘 要:提出一种新的基于中值迭代函数的自适应序列生境粒子群优化算法。该算法利用中值迭代函数来判断搜索空间中的任意两点是否属于相同的峰,从而自适应地改变当前进化粒子的适应值,克服了标准序列生境算法中必须利用先验知识确定小生境半径的缺陷以及在利用山谷函数分类中必须利用先验知识确定采样概率矩阵的缺陷。将该算法用于多峰函数最优搜索问题。通过多个Matlab仿真实验,验证了算法的有效性。实验结果表明:算法能够自适应、更高效准确地遍历多峰函数的所有极值,可应用于求解局部最优和全局最优问题。In this paper it proposes a novel adaptive sequential niche particle swarm optimization algorithm, which is based on the Recursive Middling ( RM ) function. In this algorithm, the RM function is used to determine whether any two points in search space belong to the same peak of the multimodal function or not, and then to change adaptively the fitness of a current evolutionary particle in a sub-swarm. It overcomes the pitfall in standard sequential niche algorithm that niche radius have to be determined with prior knowledge and the pitfall in the use of hill-valley function that the sampling probability array has to be decided with prior knowledge. Applying this algorithm to searching the multiple optimal solutions for multimadal function,its validity has been proved by a couple of Matlab emulation experiments. The comparative experimental results show that the proposed algorithm is able to traverse all the extrema of multimodal function adaptively and efficiently, and to be applied in searching local and global multiple optimal solutions for the benchmark test function.
关 键 词:粒子群优化 中值迭代函数 序列生境 多峰函数优化
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构] TP391.41[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28