检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王利民[1,2] 李雄飞[1,2] 徐沛娟[1,2]
机构地区:[1]吉林大学计算机科学与技术学院,长春130012 [2]吉林大学符号计算与知识工程教育部重点实验室,长春130012
出 处:《计算机科学》2009年第3期119-122,共4页Computer Science
基 金:国家自然科学基金(60275026)资助
摘 要:提出多模式贝叶斯分类算法,由变量值之间的条件独立和条件相关性推断因果关系,根据每个完整随机样本而非整个样本空间构造子模式。结合局部计算近似推理进行概率密度和条件概率分布估计,在此基础上采用后离散化策略自动确定连续变量边界。在UCI机器学习数据集上的实验结果证明了该算法的合理性和有效性。A multi-schema Bayesian classification algorithm was proposed to solve the problem of discretization assumption and graph representation. By reasoning the conditional independence and dependence between attribute values, a submodel was constructed for each complete random instance rather that the whole instance space. The boundary of continuous attribute was decided automatically based on post-discretization strategy, the joint probability density arid conditional probability were estimated based on marginal computation. The experimental study on the UCI data set shows that, this algorithm overcomes the restrictiveness of traditional TAN and can describe the marginal dependency of mixed-mode data more intuitively and accurately.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38