检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,长沙410083
出 处:《系统仿真学报》2009年第4期1024-1028,共5页Journal of System Simulation
基 金:国家杰出青年科学基金资助项目(60425310)
摘 要:针对铅锌烧结过程中具有强非线性、时滞的特点,提出一种基于变学习率的烧结块产量质量神经网络预测模型。通过分析过程特性和工况参数的相关性,确定影响产量和质量的操作参数;采用普通的BP(Back Propagation,简称BP)神经网络结构,建立铅锌烧结块产量质量预测模型;在网络训练的过程中,采用变学习率的方法对BP算法进行改进,获得了满意的预测效果,该算法具有较快的收敛速度。将改进的神经网络模型进行仿真实验,结果表明,该模型具有较高的预测精度和较强的自学习功能,从而验证了方法的有效性。There are some features of strong non-linearity and a large time delay in the lead-zinc sintering process (LZSP), a variable-learning-rate-based back propagation neural network (BPNN) is used for predicting quantity and quality of sintering agglomeration. First, the factors influencing quantity and quality were determined by investigating the correlation of operation parameters. Then, the quantity-quali(y prediction models of agglomerations were established by applying a BPNN based on the variable-learning-rate method. In the process of training BPNN, the usual BP was improved by changing the learning rate, and satisfactory predicted results were obtained. This algorithm shows a better convergence rate. Finally, the obtained quantity-quality prediction models were applied for LZSP. Prediction results show that the proposed models possess higher accuracy and strong self-study ability. The model of quantity and quality in the LZSP is effective.
关 键 词:铅锌烧结过程 BP神经网络 变学习率 产量质量预测模型
分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.10.218