基于地震属性优选与支持向量机的油气预测方法  被引量:19

Method of oil/gas prediction based on optimization of seismic attributes and support vector machine.

在线阅读下载全文

作  者:唐耀华[1] 张向君[2] 高静怀[1] 

机构地区:[1]西安交通大学电子与信息工程学院,陕西省西安市710049 [2]大庆石油管理局物探公司研究所,黑龙江大庆163357

出  处:《石油地球物理勘探》2009年第1期75-80,共6页Oil Geophysical Prospecting

基  金:中国高技术研究发展计划(863)(2006AA09A102-11);国家自然科学基金项目(40730424)资助

摘  要:地震属性分析技术是油气藏勘探开发中的主要研究内容。在利用地震属性进行油气预测前,必须优选出对研究区块油气敏感、彼此相关性不强的属性组。本文针对支持向量机提出一种新的特征选择算法,通过定义核特征相似度推导出核空间类可分性度量,并根据类可分性的变化递归选择最具判别能力的属性子集。将本文算法与支持向量机结合应用于四川观音场构造阳新统上部碳酸盐岩储层和大庆油田G开发区块的油气预测,预测结果验证了本文方法的有效性,可以成为油气预测中的一种可选方法。Seismic attribute analysis technique is major studied content in oil/gas reservoir exploration and development. It should optimize the attribute group that is sensitive to oil and gas in work zone and no strong cross-correlation before carrying out the oil/gas prediction. The paper presented a new feature-selecting algorithm based on support vector machine. The class separability of kernel space is deduced by defining kernel feature similarity. The subset of attributes having most discriminating ability is selected iteratively based on the variation of class separability. In combination with support vector machine, the algorithm presented in the paper was applied to the issue of oil/gas prediction for Upper Yangxin Series carbonate reservoir in Sichuan Guanyinchang structure and G development block in Daqing Oilfield respectively. The predicted results proved the effectiveness of the method in the paper, which is able to become optional method in oil/gas prediction.

关 键 词:地震属性 特征选择 油气预测 支持向量机 

分 类 号:P631.4[天文地球—地质矿产勘探] TP181[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象