检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《塑性工程学报》2008年第5期186-190,共5页Journal of Plasticity Engineering
基 金:国家自然科学基金资助项目(50675186);河北省自然科学基金重大资助项目(E2006001038)
摘 要:模糊系统和神经网络,由于具有逼近任意连续非线性映射的特性,而广泛应用于系统的辨识与控制。但是传统的模糊神经网络是一种静态映射,不适用于动态系统的辨识,而轧制过程中影响轧机辊缝的因素复杂,外界干扰严重,过程参数难以确定,为提高轧机辊缝动态的辨识精度,提出了一种基于动态递归模糊神经网络的辨识模型。轧制仿真结果表明,该模型具有很高的辨识精度。Because of the specialities of approaching any continuous nonlinear mapping, the fuzzy system and the neural network are generally applied to the system identification and control. But, the traditional fuzzy neural network is an static mapping, and not acceptable for the dynamic system identification. For the complex factors that influencing the roll gap in the rolling process, and the serious external disturbances, the procedure parameters are difficult to determine. In order to improve the dynamic identification precision of the gap, a identification model based on the dynamic recursion fuzzy neural network is put forward. The results of the simulation indicated that the model has higher identification precision.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.192.62