检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学宇航科学技术学院,北京100081
出 处:《固体火箭技术》2009年第1期15-19,共5页Journal of Solid Rocket Technology
基 金:国防基础科研项目基金(B222006060)
摘 要:为研究卷弧翼火箭弹圆锥运动稳定情况下的收敛速度,以章动角坐标系下描述其运动性态的微分方程组为基础,运用小偏差线性化方法和劳斯判据得到了卷弧翼火箭弹圆锥运动的渐近稳定性判别条件。在满足该条件的情况下,推导了圆锥运动收敛速度的通用计算公式,并指出圆锥运动的过渡过程是指数收敛过程和振荡收敛过程的叠加。算例表明,该计算公式所得结果与原非线性方程组所得结果吻合较好。最后,指出只适用于小锥角情况是该方法的局限性,并给出了进一步的研究方向。Aiming at research on the convergence speed of transient process of the coning motion of the wrap-around-fin (WAF) rockets in steady process, the criterion to judge the asymptotic stability was deduced by means of small deviations linearization theory and Routh criterion based on the coning motion differential equations in nutation angle coordinate. The general formula was deduced under above-mentioned condition. It is indicated that the transient process is the superposition of exponential convergence process and oscillation convergence process. The results deduced by above compute method are in good agreement with the results obtained by original non-linear equations. Only suitable to the sitoation under small angle of nutation is the limitation of this method. Finally, future research direction is also discussed.
分 类 号:TJ765[兵器科学与技术—武器系统与运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147