Viability for a class of semilinear differential equations of retarded type  

Viability for a class of semilinear differential equations of retarded type

在线阅读下载全文

作  者:DONG Qi-xiang LI Gang School of Math. Sci., Yangzhou Univ., Yangzhou 225002, China 

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2009年第1期36-44,共9页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China (10571150);the Natural Science Foundation of Jiangsu Education Committee (07KJB110131)

摘  要:Let X be a Banach space, A : D(A) X → X the generator of a compact C0- semigroup S(t) : X → X, t ≥ 0, D a locally closed subset in X, and f : (a, b) × X →X a function of Caratheodory type. The main result of this paper is that a necessary and sufficient condition in order to make D a viable domain of the semilinear differential equation of retarded type u'(t) = Au(t) + f(t, u(t - q)), t ∈ [to, to + T], with initial condition uto = φ ∈C([-q, 0]; X), is the tangency condition lim infh10 h^-1d(S(h)v(O)+hf(t, v(-q)); D) = 0 for almost every t ∈ (a, b) and every v ∈ C([-q, 0]; X) with v(0), v(-q)∈ D.Let X be a Banach space, A : D(A) X → X the generator of a compact C0- semigroup S(t) : X → X, t ≥ 0, D a locally closed subset in X, and f : (a, b) × X →X a function of Caratheodory type. The main result of this paper is that a necessary and sufficient condition in order to make D a viable domain of the semilinear differential equation of retarded type u'(t) = Au(t) + f(t, u(t - q)), t ∈ [to, to + T], with initial condition uto = φ ∈C([-q, 0]; X), is the tangency condition lim infh10 h^-1d(S(h)v(O)+hf(t, v(-q)); D) = 0 for almost every t ∈ (a, b) and every v ∈ C([-q, 0]; X) with v(0), v(-q)∈ D.

关 键 词:VIABILITY differential equation retarded type tangency condition 

分 类 号:O175[理学—数学] O177.2[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象