基于LSSVM-MODE的水煤浆生产优化控制  被引量:2

Optimization Control of Preparation of Coal Water Mixture Based on LSSVM-MODE

在线阅读下载全文

作  者:刘定平[1] 叶向荣[1] 邓华裕 

机构地区:[1]华南理工大学电力学院,广东广州510640 [2]茂名热电厂,广东茂名525011

出  处:《华南理工大学学报(自然科学版)》2009年第2期158-162,共5页Journal of South China University of Technology(Natural Science Edition)

摘  要:水煤浆(CWM)制造过程中,生产成本的降低和水煤浆性能的提高之间存在着矛盾.文中利用最小二乘支持向量机(LSSVM)对球磨机电流和水煤浆浓度进行多目标建模,并采用基于Pareto最优概念的多目标微分进化(MODE)算法对运行工况进行寻优,然后根据模糊集理论在Pareto解集中求得满意解,获得了水煤浆浓度的优化调整方式和提高水煤浆生产效益的策略.In the production of coal water mixture ( CWM), there exists an inconsistency between the production cost and the product performance. In order to solve this problem, the least-square support vector machine is em- ployed to establish a muhi-objective optimization model for CWM concentration and ball mill current, and the multi- objective differential evolution algorithm based on Pareto optimal concept is used to optimize the operation condi- tions, Moreover, the fuzzy set theory is introduced to obtain the satisfactory solutions in Pareto solution set. An op- timized adjustment mode of CWM concentration and some strategies to improve the CWM production benefit are fi- nally proposed in the paper.

关 键 词:水煤浆 优化运行 最小二乘支持向量机 多目标微分进化算法 

分 类 号:TK323[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象