检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《振动.测试与诊断》2009年第1期46-50,共5页Journal of Vibration,Measurement & Diagnosis
基 金:国家自然科学基金资助项目(编号:59778043)
摘 要:提出了一种基于希尔伯特黄变换(Hilbert-Huang Transform,简称HHT)识别桥梁颤振导数的方法。根据HHT理论,首先利用经验模态分解(Empirical Mode Decomposition,简称EMD)将桥梁节段模型风洞试验中实测得到的自由振动加速度响应信号分解成一系列本征模函数(Intrinsic Mode Function,简称IMF)分量,对幅值最大的IMF分量作希尔伯特变换,得到其瞬时振幅和瞬时频率。通过信号处理,识别出结构的固有频率和模态阻尼比。其次,对自由振动时程进行时域拟合,获得结构的复振型。最后通过状态方程确定系统的8个颤振导数。数值仿真算例表明,该方法具有较好的抗噪性和可靠性,风洞试验也验证了该方法的可行性和有效性。This paper presents a method for flutter derivatives identification of bridges based on Hilbert-Huang transform(HHT).According to the theory of HHT,firstly,the measured acceleration response signals of free-vibration for a sectional model in a wind tunnel experiment are decomposed into a series of intrinsic mode function(IMF) components by the empirical mode decomposition(EMD) and HHT is applied to the IMF components which have the largest amplitudes to obtain the corresponding instantaneous amplitudes and instantaneous frequencies.Accordingly,the natural frequencies and the modal damping ratios are determined by signal processing.Secondly,the complex mode shapes are obtained by the fitting of the free vibration responses in time domain.Finally,the eight flutter derivatives are identified by solving the structural state equation.Simulation results show the good noise-resistance and reliability of the method.The wind tunnel experiment validates the feasibility and practicality of the method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15