检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学复杂工程系统测量与控制教育部重点实验室,南京210096
出 处:《控制与决策》2009年第3期371-376,共6页Control and Decision
基 金:国家自然科学基金项目(60574062);国家863计划项目(2007AA04Z112)
摘 要:对模糊Petri网进行改进,使其增加自学习能力,即自学习模糊Petri网(SFPN).提出了自学习模糊Petri网模型知识库的建立方法,通过构造SFPN模型知识库,建立并保存现有产品的SFPN模型,开发新产品或进行新的决策时调出并进行修正后作为新产品模型,通过较短时间和少量样本的自学习训练,便可用于新产品的预测或决策.最后通过采购预测实例验证了该方法的有效性.Fuzzy Petri nets are improved by adding the ability of self-learning, namely self-learning fuzzy Petri nets (SFPN). The method of building the self-learning fuzzy Petri nets model knowledge base is proposed. SFPN models of existing products are established and kept by building the SFPN model knowledge base. While a new product is developed or a new decision is made, the SFPN model of existing product can be read, modified and used as that of new product, which can be used to forecast or make a decision on new product through self-learning and self-training with less time and a few of samples. Finally, an application of forecasting real purchase shows the effectiveness of the method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147