检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高炜欣[1] 穆向阳[1] 汤楠[1] 闫宏亮[1]
出 处:《计算机应用》2009年第4期1028-1031,共4页journal of Computer Applications
基 金:陕西省科学技术研究发展计划项目(2008K07-09);陕西省教育厅专项科研计划项目(08jk411)
摘 要:提出利用多层Hopfield神经网络求解机组组合优化问题。通过构造合适的能量函数使得单层Hopfield神经网络可以解决某一时刻的机组出力问题,与之相对应的多层神经网络可以解决任意时间段的机组出力问题。多层Hopfield神经网络的层数由所需求解问题的时间段确定。给出单层及多层神经网络的能量函数及求解算法,能量函数考虑到机组升降功率和出力上下限的约束。通过对已有文献的算例进行计算比对,所得结果和遗传算法基本一致,但Hopfield神经网络通过解微分方程组来确定最优解,计算时间相对较少。This paper presented an algorithm, based on multi-layer Hopfield neural network, for determining unit commitment. By constructing an appropriate energy function, a single layer Hopfield neural network can solve the problem of assigning output power of generators at any given time. Based on this single layer Hopfield neural network, a multi-layer Hopfield neural network was presented. The multi-layer Hopfield neural network can solve the problem of power system unit commitment. The energy functions of single layer and multi-layer Hopfield neural network and the corresponding algorithm were given. The restricted conditions of the balance between power supply and demand, maximum and minimum outputs of power plants were considered in the energy function. An example shows that the result got by Hopfield neural network is like to that got by genetic algorithm, but the calculation time is much less.
关 键 词:HOPFIELD神经网络 机组组合 优化
分 类 号:TM711[电气工程—电力系统及自动化] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.121.189