First-principles lattice stability of Fe, Ru and Os  被引量:1

First-principles lattice stability of Fe, Ru and Os

在线阅读下载全文

作  者:陶辉锦 尹健 

机构地区:[1]School of Materials Science and Engineering, Central South University [2]School of Metallurgical Science and Engineering, Central South University [3]Key Laboratory of Nonferrous Materials Science and Engineering, Ministry of Education, Central South University

出  处:《Journal of Central South University》2009年第2期177-183,共7页中南大学学报(英文版)

基  金:Project(20070533118) supported by the Doctoral Discipline Foundation of Ministry of Education of China;Projects(50471058, 50271085) supported by the National Natural Science Foundation of China;Project supported by the Postdoctoral Foundation of Central South University, China

摘  要:Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave method, and compared with those of the first-principles projector augmented wave (PAW) method, CALPHAD method and experimental data. The results show that the lattice stability of this work is △GBCC-HCP>△GFCC-HCP>0, agreeing well with those of PAW method in the first-principles and CALPHAD method except for BCC-Fe. And the densities of state of HCP-Ru and Os have an obvious character of stable phase, agreeing completely with the results of the total energy calculations. Further analyses of atomic population show that the transition rate of electrons from s to p state for HCP, FCC and BCC crystals increases from Fe to Os, and a stronger cohesion, a higher cohesive energy or a more stable lattice between atoms of heavier metals are formed.Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave method, and compared with those of the first-principles projector augmented wave (PAW) method, CALPHAD method and experimental data. The results show that the lattice stability of this work is △G^BCC-HCP〉△G^FCC-HCP〉0, agreeing well with those of PAW method in the first-principles and CALPHAD method except for BCC-Fe. And the densities of state of HCP-Ru and Os have an obvious character of stable phase, agreeing completely with the results of the total energy calculations. Further analyses of atomic population show that the transition rate of electrons from s to p state for HCP, FCC and BCC crystals increases from Fe to Os, and a stronger cohesion, a higher cohesive energy or a more stable lattice between atoms of heavier metals are formed.

关 键 词:FE RU OS lattice stability FIRST-PRINCIPLES 

分 类 号:O481[理学—固体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象