基于动态维度交叉的粒子群高维函数优化  被引量:5

Particle Swarm Optimization with Dynamic Dimension Crossover for High Dimensional Problems

在线阅读下载全文

作  者:胡成玉[1] 王博[2] 

机构地区:[1]华中科技大学控制科学与工程系,湖北武汉430074 [2]上海交通大学自动化系,上海200240

出  处:《计算技术与自动化》2009年第1期92-95,共4页Computing Technology and Automation

基  金:国家自然科学基金资助(60674105);中国地质大学优秀青年教师基金资助(CUGQNL0821)

摘  要:提出一种优化高维函数的改进粒子群算法。粒子群算法在高维函数优化方面精度比较低,种群容易陷入停滞,分析粒子群算法在针对高维函数方面难以优化的原因,提出一种基于动态维度交叉的改进粒子群算法,通过对五个典型测试函数的仿真,说明该算法具有摆脱较快的收敛能力和较高的收敛精度。Previous work presented some modified approaches based particle swarm optimization (PSO) to solve complex optimization problems. Preliminary results demonstrated that PSO with crossover (CPSO) constituted a promising approach to solve some optimization problems. However how to optimize high dimensional problem with crossover became challenging. In this paper, a modified PSO with dimension crossover is proposed. First we analyze the cause of hardly optimizing the high dimensional problem, and then design one dynamic dimension crossover PSO (DDC- PSO) to cope with high dimensional problems. Finally DDC- PSO is tested on five benchmark optimization problems and the results show a superior performance compared to the standard PSO and CPSO.

关 键 词:粒子群算法 高维优化函数 维度交叉 

分 类 号:V412[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象