检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏科技大学电子信息学院,江苏镇江212003 [2]浙江大学CAD&CG国家重点实验室,浙江杭州310027
出 处:《微电子学与计算机》2009年第4期174-177,共4页Microelectronics & Computer
基 金:江苏省高校自然科学基础研究项目(08KJB520003);浙江大学CAD&CG国家重点实验室开放课题基金项目(A0704)
摘 要:在标准粒子群优化算法的每一次迭代中,粒子都是同时更新,然而在现实世界中(比如鸟群)粒子的更新并不是同时的.模拟现实的鸟群更新,找到一种异步粒子群优化算法.异步粒子群优化算法是将粒子的更新顺序进行改进,在每次迭代中将所有粒子按适应度的优劣排序,从而每个粒子在更新时都能利用到当代群体的信息,所以算法更易于收敛.提出一种基于异步粒子群优化算法的图像分割方法,用异步粒子群优化算法自适应选取图像的分割阈值.实验表明,与基本的粒子群优化算法相比,该算法比较稳定,易于收敛到最优解,分割速度较快.In a standard PSO algorithm all particles will be updated at the same time during the course of iteration, while in real-world swarm (such as flock of birds) not all particles are updated in the same time. A novel particle swarm opti- mization algorithm is proposed by simulating the real-world swarm. A asynchronous particle swarm optimization is based on improving the update order of particles, which sorts all particles lay computing the fitness, so particles update those positions and velocities continuously by making use of currently available information. A novel image segmentation method based on asynchronous particle swarm optimization is provided, which finds the threshold by asynchronous particle swarm optimizatiort Numerical experiments show that the asynchronous particle swarm optimization per/otto.s similarly and sometime even better than standard approaches for the considered problems.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46