检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北师范大学物理科学与信息工程学院,河北石家庄050016 [2]河北科技大学信息科学与工程学院,050018
出 处:《微计算机信息》2009年第10期44-45,88,共3页Control & Automation
摘 要:针对电动汽车中无刷直流电机负载波动较大的特点,提出了4层模糊神经网络模型,该模型融合了模糊逻辑和神经网络的长处,模糊推理和解模糊化均通过神经网络来实现。模糊化层将输入特征量转化为模糊量,选取的隶属函数使神经网络的权值表示一定的知识,在输出层通过解模糊得到具体的控制量。实验结果表明,该模糊神经控制系统具有较好的带负载能力和抗负载变化能力,达到了预期的效果。Aiming at the Brushless DC Motor(BLDCM) in electric vehicles whose load fluctuates irregularly, an four-layer fuzzy neural networks is presented. By fusing the advantages of fuzzy logic and neural networks, both the fuzzy inferenee and the defuzzification of this model were realized by neural networks. The input variables were translated into fuzzy variables by fuzzy layer. The selected membership function made neural network weight values have definite knowledge meaning. Finally, the reliable control values were gained by proper defuzzification on the output layer. The results show that it exhibits robustness and good adaptation capability, and it can be practically implemented.
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229