检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学动力工程多项流国家重点实验室核能系,西安710049
出 处:《核动力工程》2010年第S1期49-52,共4页Nuclear Power Engineering
摘 要:成功构建了2个分别用于预测同心圆管开式热虹吸器内自然循环临界热流密度(CHF)和池式核态沸腾换热系数的人工神经网络。其预测均方误差分别为16.43%和19.57%。用训练成功的人工神经网络分析了2种沸腾换热的影响因素,分析结果表明:热虹吸器内同心内管的出现使CHF增加,热虹吸器内的CHF随内管外径的增加先增加后减小。池式核态沸腾表面传热系数随压力的增加先呈线性增加,当压力接近临界压力时,增加速度增大。In this paper,two artificial neural networks (ANNs) are trained successfully to predict the CHF of thermosyphon and heat transfer coefficient of pool nucleate boiling respectively. The root mean square of predicated value are 16.43% and 19.57%,respectively. The analysis results indicate that CHF would be improved by inserting an inner tube in the thermosyphon. CHF increases initially as inner tube diameter increases and then decreases with the further increase of inner tube diameter. The heat transfer coefficient of pool nucleate boiling increases linearly as pressure increases,and when the pressure is close to the critical pressure,the increasing rate increases.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63