检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学电子与信息工程学院,陕西西安710049
出 处:《华中科技大学学报(自然科学版)》2007年第S2期164-167,共4页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:国家高技术研究发展计划资助项目(2004AA111110;2006AA01A109);中国教育科研网格计划资助项目(CG2003-CG008)
摘 要:针对由于作业调入调出引起的负载突变,提出了基于通知机制的反传(BP)网络和动态滑动窗口混合预测方法,设计并实现了基于神经网络的负载预测器.该方法在发生突变时,利用动态滑动窗口均值法预测并重新训练样本,训练结束后使用新的BP模型预测.其通知机制能减少预测器的样本识别时间,模型保存机制提供了无需训练样本的机会.测试结果表明,该预测器具有较好的预测精度,能够将大部分预测值的平均误差控制在5%以内,并快速适应突变事件.According to the sudden change of workload caused by job join or exit,a new prediction method combining BP and dynamic sliding window average prediction method have been proposed.A neural network based predictor has been developed.When a job joined or exited,the job scheduler informed the predictor.The predictor employed dynamic sliding window average method to predict,and meanwhile,it retrained the BP model.Upon the completion of retraining,the new BP model was leveraged to predict.The notice mechanism of the combining method could reduce the time of identifying the sudden change workload.In addition,this method provided a model reservation mechanism which offered an opportunity without retraining model when jobs exited.The measurement results showed that the predictor could quickly adapt to the sudden change scenario,and the average percentage error is within 5 %.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.201.103