Identification of novel catalytic features of endo-β-1,4-glucanase produced by mulberry longicorn beetle Apriona germari  被引量:1

Identification of novel catalytic features of endo-β-1,4-glucanase produced by mulberry longicorn beetle Apriona germari

在线阅读下载全文

作  者:SAMI Amtul Jamil HAIDER Mohammed Kamran 

机构地区:[1]Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54594, Pakistan

出  处:《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》2007年第10期765-770,共6页浙江大学学报(英文版)B辑(生物医学与生物技术)

摘  要:Mulberry longicorn beetle, Apriona germari, has been reported to produce two endo-β-1,4-glucanases or AgEGases (accession Nos. Q6SS52 and Q5XQD1). AgEGase sequence contains catalytic motif (amino acid residues 37~48), which is the characteristic of family Glycohydrolase 45 and is identified as the substrate binding site. The application of bioinformatics ap-proaches includes sequence analysis, structural modeling and inhibitor docking to relate the structure and function of AgEGases. We have dissected the sequence and structure of AgEGase catalytic motif and compared it with crystal structure of Humicola insolens endoglucanases V. The results show an involvement of sulfur containing amino acid residues in the active site of the enzyme. Cys residues and position of disulfide bonds are highly conserved between the two structures of endoglucanases of A. germari. Surface calculation of AgEGase structure in the absence of Cys residues reveals greater accessibility of the catalytic site to the substrate involving Asp42, a highly conserved residue. For the inhibition study, tannin-based structure was docked into the catalytic site of AgEGase using ArgusLab 4.0 and it resulted in a stable complex formation. It is suggested that the inhibition could occur through formation of a stable transition state analog-enzyme complex with the tannin-based inhibitor, as observed with other insect cellulases in our laboratory.Mulberry longicorn beetle, Apriona germari, has been reported to produce two endo-β-1,4-glucanases or AgEGases (accession Nos. Q6SS52 and Q5XQD1). AgEGase sequence contains catalytic motif (amino acid residues 37~48), which is the characteristic of family Glycohydrolase 45 and is identified as the substrate binding site. The application of bioinformatics ap-proaches includes sequence analysis, structural modeling and inhibitor docking to relate the structure and function of AgEGases. We have dissected the sequence and structure of AgEGase catalytic motif and compared it with crystal structure of Humicola insolens endoglucanases V. The results show an involvement of sulfur containing amino acid residues in the active site of the enzyme. Cys residues and position of disulfide bonds are highly conserved between the two structures of endoglucanases of A. germari. Surface calculation of AgEGase structure in the absence of Cys residues reveals greater accessibility of the catalytic site to the substrate involving Asp42, a highly conserved residue. For the inhibition study, tannin-based structure was docked into the catalytic site of AgEGase using ArgusLab 4.0 and it resulted in a stable complex formation. It is suggested that the inhibition could occur through formation of a stable transition state analog-enzyme complex with the tannin-based inhibitor, as observed with other insect cellulases in our laboratory.

关 键 词:Cellulases AgEGase Apriona germari INHIBITION ANTHOCYANIDINS 

分 类 号:Q966[生物学—昆虫学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象