检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Science China Mathematics》2007年第2期285-291,共7页中国科学:数学(英文版)
基 金:This work was supported by the National Natural Science Foundation of China (Grant No. 10401021)
摘 要:In this paper, an explicit formulation for multivariate truncated power functions of degree one is given firstly. Based on multivariate truncated power functions of degree one, a formulation is presented which counts the number of non-negative integer solutions of s×(s + 1) linear Diophantine equations and it can be considered as a multi-dimensional versions of the formula counting the number of non-negative integer solutions of ax + by = n which is given by Popoviciu in 1953.In this paper, an explicit formulation for multivariate truncated power functions of degree one is given firstly. Based on multivariate truncated power functions of degree one, a formulation is presented which counts the number of non-negative integer solutions of s × (s + 1) linear Diophantine equations and it can be considered as a multi-dimensional versions of the formula counting the number of non-negative integer solutions of ax + by = n which is given by Popoviciu in 1953.
关 键 词:multivariate splines discrete truncated power linear Diophantine equations 41A15 05A15
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7