TRANSIENT RESPONSE INVESTIGATION OF GIMBALLED TILTROTORS DURING ENGAGE AND DISENGAGE OPERATIONS  

TRANSIENT RESPONSE INVESTIGATION OF GIMBALLED TILTROTORS DURING ENGAGE AND DISENGAGE OPERATIONS

在线阅读下载全文

作  者:康浩 

出  处:《Chinese Journal of Aeronautics》1999年第3期28-33,共6页中国航空学报(英文版)

摘  要:An analysis has been developed to predict the transient aeroelastic response of gimballed tiltrotors during shipboard engage/disengage operations. A multi blade gimballed rotor is modeled with slender elastic beams rigidly attached to a hub and undergoing flap bending, lag bending, elastic twist, and axial deflection. The gimbal restraint is simulated using a conditional rotational spring. Blade element theory is used to calculate quasi steady loads in linear and nonlinear regimes. The rotor equations of motion are formulated using Hamiltons principle and spatially discretized using the finite element method. The discretized rotor equations of motion are integrated in the modal space for a specified rotor speed run up profile. Studies for a 1/5 size aeroelastically scaled tiltrotor model are conducted to validate the analysis and investigate the transient response and loads of the gimballed rotor during engagement. Blade bending moment and hub moment predictions indicated that gimbal restraint impacts can induce high transient loads on the rotor blades and hub.An analysis has been developed to predict the transient aeroelastic response of gimballed tiltrotors during shipboard engage/disengage operations. A multi blade gimballed rotor is modeled with slender elastic beams rigidly attached to a hub and undergoing flap bending, lag bending, elastic twist, and axial deflection. The gimbal restraint is simulated using a conditional rotational spring. Blade element theory is used to calculate quasi steady loads in linear and nonlinear regimes. The rotor equations of motion are formulated using Hamiltons principle and spatially discretized using the finite element method. The discretized rotor equations of motion are integrated in the modal space for a specified rotor speed run up profile. Studies for a 1/5 size aeroelastically scaled tiltrotor model are conducted to validate the analysis and investigate the transient response and loads of the gimballed rotor during engagement. Blade bending moment and hub moment predictions indicated that gimbal restraint impacts can induce high transient loads on the rotor blades and hub.

关 键 词:TILTROTOR transient response aeroelasticity engage operation 

分 类 号:V228.5[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象