VERIFYING THE IMPLICITIZATION FOR MULAE FORDEGREE n RATIONAL BEZIER CURVES  

VERIFYING THE IMPLICITIZATION FORMULAE FORDEGREE n RATIONAL BEZIER CURVES

在线阅读下载全文

作  者:Wang, GJ Sederberg, TW 

机构地区:[1]Brigham Young Univ, Dept Comp Sci, Provo, UT 84602 USA [2]Zhejiang Univ, Dept Appl Math, Hangzhou 310027, Peoples R China

出  处:《Journal of Computational Mathematics》1999年第1期33-40,共8页计算数学(英文)

摘  要:This is a continuation of short communication([1]). In [1] a verification of the implicitization equation for degree two rational Bezier curves is presented which does not require the use of resultants. This paper presents these verifications in the general cases, i.e., for degree n rational Bezier curves. Thus some interesting interplay between the structure of the n x n implicitization matrix and the de Casteljau algorithm is revealed.This is a continuation of short communication([1]). In [1] a verification of the implicitization equation for degree two rational Bezier curves is presented which does not require the use of resultants. This paper presents these verifications in the general cases, i.e., for degree n rational Bezier curves. Thus some interesting interplay between the structure of the n x n implicitization matrix and the de Casteljau algorithm is revealed.

关 键 词:rational Bezier curve IMPLICITIZATION RESULTANT de Casteljau algorithm 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象