Reciprocal sums of a class of additive functions in short intervals  

Reciprocal sums of a class of additive functions in short intervals

在线阅读下载全文

作  者:ZHAI WenguangDepartment of Mathematics, Shandong Normal University, Jinan 250014, China 

出  处:《Chinese Science Bulletin》1997年第2期102-105,共4页

摘  要:USING the method of probabilistic number-theory, De Koninck, and De Koninck and Galambos studied the reciprocal sum of the additive function f(n) satisfying f(n)≥t<sub>0</sub>】0 (n≥2) and f(p)≡1 and obtained an asymptotic formula, where t<sub>0</sub> is an absolute positive constant. Let B(x) denote the number of n≤x not satisfying the inequality loglogn-R(x)≤f(n)≤loglogn+R(x), (1) where R(x) is a function tending to infinity. Then in refs. [1, 2], it is proved that if R(x)=o(loglogx) and B(x)=o(x/loglogx),

关 键 词:ADDITIVE functions RIEMANN ZETA-FUNCTION ASYMPTOTIC formula. 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象