检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, Sichuan University, Chengdu 610064, China
出 处:《Chinese Science Bulletin》1995年第20期1681-1683,共3页
基 金:Project supported by the National Natural Science Foundation of China.
摘 要:Let b】1 be an integer. Aurifeuille et al. discovered a special factorization for a class of numbers in the form of b<sup>n</sup>±1. It is called Aurifeuillian factorization. Let p be an odd prime. Let ζ=ζ<sub>p</sub> denote the primitive pth root of unity exp (2πi/p).Let (/) denote the Jacobi symbol. When p≡1 (mod 4) and N=(P<sup>p</sup>-1)/(p-1)=P<sup>p-1</sup>+p<sup>P-2</sup>+…+p+1, Hahn gave the congruence equation X<sup>2</sup>≡p (mod N) the four<正> Let b>1 be an integer. Aurifeuille et al. discovered a special factorization for a class of numbers in the form of bn±1. It is called Aurifeuillian factorization. Let p be an odd prime. Let ζ=ζpdenote the primitive pth root of unity exp (2πi/p).Let (/) denote the Jacobi symbol. When p≡1 (mod 4) and N=(Pp-1)/(p-1)=Pp-1+pP-2+…+p+1, Hahn gave the congruence equation X2≡p (mod N) the four solutions
关 键 词:Aurifeuillian FACTORIZATION cyclotomic field of PTH ROOTS of unity GALOIS group.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70