A question about Aurifeuillian factorizations  

A question about Aurifeuillian factorizations

在线阅读下载全文

作  者:孙琦 袁平之 韩清 

机构地区:[1]Department of Mathematics, Sichuan University, Chengdu 610064, China

出  处:《Chinese Science Bulletin》1995年第20期1681-1683,共3页

基  金:Project supported by the National Natural Science Foundation of China.

摘  要:Let b】1 be an integer. Aurifeuille et al. discovered a special factorization for a class of numbers in the form of b<sup>n</sup>±1. It is called Aurifeuillian factorization. Let p be an odd prime. Let ζ=ζ<sub>p</sub> denote the primitive pth root of unity exp (2πi/p).Let (/) denote the Jacobi symbol. When p≡1 (mod 4) and N=(P<sup>p</sup>-1)/(p-1)=P<sup>p-1</sup>+p<sup>P-2</sup>+…+p+1, Hahn gave the congruence equation X<sup>2</sup>≡p (mod N) the four<正> Let b>1 be an integer. Aurifeuille et al. discovered a special factorization for a class of numbers in the form of bn±1. It is called Aurifeuillian factorization. Let p be an odd prime. Let ζ=ζpdenote the primitive pth root of unity exp (2πi/p).Let (/) denote the Jacobi symbol. When p≡1 (mod 4) and N=(Pp-1)/(p-1)=Pp-1+pP-2+…+p+1, Hahn gave the congruence equation X2≡p (mod N) the four solutions

关 键 词:Aurifeuillian FACTORIZATION cyclotomic field of PTH ROOTS of unity GALOIS group. 

分 类 号:O156[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象