检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:浦黄忠[1] 甄子洋[1] 王道波[1] 胡勇[2]
机构地区:[1]南京航空航天大学自动化学院 [2]浙江大学电气工程学院
出 处:《Transactions of Nanjing University of Aeronautics and Astronautics》2009年第1期52-57,共6页南京航空航天大学学报(英文版)
基 金:Supported by the Graduate Student Research Innovation Program of Jiangsu Province(CX08B-091Z);the Innovation and Excellence Foundation of Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ08-06)~~
摘 要:An improved particle swarm optimization (PSO) algorithm is investigated in the optimization of the attitude controller parameters of unmanned aerial vehicle (UAV). Considering the stagnation phenomenon in the later phase of the basic PSO algorithm caused by the diversity scarcity of particles, a modified PSO algorithm is presented. For the basic PSO algorithm, the velocity of each particle is adjusted according to the inertia motion, the swarm previous best position and its own previous best position. However, in the improved PSO algorithm, each particle only learns from another randomly selected particle with higher performance, besides keeping the inertia motion. The inertia weight of the improved PSO algorithm is a random number. The modification decreases the uncertain parameters of the algorithm, simplifies the learning mechanism of the particle, and enhances the diversity of the swarm. Furthermore, a UAV attitude control system is built, and the improved PSO algorithm is applied in the optimized tuning of four controller parameters. Simulation results show that the improved PSO algorithm has stronger global searching ability than the common PSO algorithms, and obtains better UAV attitude control parameters.提出了基于改进微粒群算法的无人机姿态控制器参数智能整定方法。标准微粒群算法在搜索后期由于群体缺乏多样性而容易出现收敛停滞现象,为此提出了一种改进的微粒群算法。标准微粒群算法中的微粒速度是根据惯性运动、群体历史最优位置和自身历史最优位置来调节的。改进微粒群算法中的微粒除了保持惯性运动外,仅向当前群体中任意更优个体的状态学习,而且惯性权重系数是随机数。改进方案减少了算法不确定参数,简化了微粒学习机制,且增强了群体多样性。本文构建了无人机姿态控制系统,将改进微粒群算法用于四个控制参数的寻优整定。仿真结果表明,改进微粒群算法比一般微粒群算法具有更强的全局搜索能力,故获得更优的无人机姿态控制参数。
关 键 词:unmanned aerial vehicle attitude control particle swarm optimization
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] V249[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229