检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张勇[1,2] 丛茜[1] 谢云飞[3] 赵冰[3]
机构地区:[1]吉林大学地面机械仿生技术教育部重点实验室,长春130025 [2]吉林工程技术师范学院,长春130052 [3]吉林大学超分子结构与材料国家重点实验室,长春130012
出 处:《高等学校化学学报》2009年第4期697-700,共4页Chemical Journal of Chinese Universities
基 金:国家自然科学基金(批准号:20473029;20573041);吉林省科技厅项目(批准号:20060902-02;200705C07)资助
摘 要:测定了120个产自福建、安徽和云南烟草样品的近红外光谱.在利用支持向量机(SVM)技术建立其定量、定性分析模型之前,用小波变换技术对光谱变量进行了有效的压缩,然后采用径向基核函数建立了75个烟草样品的分类模型,同时建立了总糖、还原糖、烟碱和总氮4个组分的定量分析模型,并利用45个烟草样品对模型进行了检验.仿真实验表明,建立的SVM分类模型分类准确率达到100%,而4个组分的定量分析模型的预测决定系数(R2)、预测均方差(RMSEP)和平均相对误差(RME)3个指标值显示其模型泛化能力非常强,预测效果良好,可见这是一种有效的近红外光谱的建模分析方法.In this study, in order to establish analysis models of near-infrared spectroscopy (NIR) of tobacco, 120 samples of tobacco from different cultivation area were surveyed by near-infrared(NIR) spectroscopy. As the new pattern recognition, support vector machine (SVM) can avoid over-fitting problem and owns the superior generalization ability and prediction accuracy, were applied in this study. The quantitative and qualitative analysis models of tobacco samples were studied separately in this experiment using radial basis function (RBF) SVM. For reducing dimension and moving noise, the spectrum variables were highly effectively compressed using the wavelet transformation(WT) technology and the haar wavelet was selected to decompose the spectroscopy signals. Simultaneously, the parameters of the models were also discussed in detail. The best experimental results were obtained using the RBF SVM regression with kernel parameter σ = 1.0, 1.2, 1.4, 0. 6, separately corresponds to total-sugar, reducing sugar, nicotine, total-nitrogen, and RBF SVM classifier with kernel parameter σ = 1.6. Meanwhile, the values of appraisal index, namely coefficient of determination (R^2) , root mean squared error of prediction(RMSEP) and mean relative error( RME), indicate its excellent generalization for quantitative and qualitative analysis results and high prediction accuracy. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of chemical compositions in tobacco and discrimination of tobacco of different origins. On the other hand, the research can show that SVM is effective modeling tools to NIR spectroscopy and can provide technical support for quantitative and quantitative analysis of other NIR applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.12