改进的参考独立分量分析算法  被引量:5

Improved algorithm for independent component analysis with reference

在线阅读下载全文

作  者:李昌利[1,2] 廖桂生[1] 李用江[2] 

机构地区:[1]西安电子科技大学雷达信号处理国家重点实验室,陕西西安710071 [2]广东海洋大学信息工程学院,广东湛江524088

出  处:《华中科技大学学报(自然科学版)》2009年第4期55-57,共3页Journal of Huazhong University of Science and Technology(Natural Science Edition)

基  金:国家自然科学基金资助项目(60736009)

摘  要:鉴于参考独立分量分析定义了所谓的接近性度量函数和与之相关的不等式,并把它作为约束项引入到负熵对比度函数中,取得了很好的分离效果,但存在若阈值选取不当则算法不收敛的问题.提出一个改进算法,算法的优化函数为负熵对比度函数和参考独立分量分析算法中的接近性度量函数之积,巧妙地避开了这个难以确定的阈值参数.针对合成数据和实际ECG数据的仿真实验表明,改进算法收敛快、提取效果好.Independent component analysis with reference (ICA-R) defines a so-called closeness measure function and inequality concerned, incorporates it into the negentropy contrast as a constrained terms to achieve good separation results. However, theoretic analysis and experiments shows ICA-R even can't converge if the threshold parameter is improperly selected. An improved algorithm is presented, whose optimization function is the product of the negentropy contrast and the closeness measure function in ICA-R, and it can smartly avoid the threshold parameter difficult to determine. Experiments with synthetic signals and real exchange software generator (ECG) data demonstrate its quick convergence and good separation.

关 键 词:盲源分离 独立分量分析 盲源提取 参考独立分量分析 参考信号 

分 类 号:TN911.25[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象