On the Blaschke Isoparametric Hypersurfaces in the Unit Sphere  被引量:12

On the Blaschke Isoparametric Hypersurfaces in the Unit Sphere

在线阅读下载全文

作  者:Xing Xiao LI Feng Yun ZHANG 

机构地区:[1]Department of Mathematics. He'nan Normal University, Xinxiang 453007, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2009年第4期657-678,共22页数学学报(英文版)

摘  要:Given an immersed submanifold x : M^M → S^n in the unit sphere S^n without umbilics, a Blaschke eigenvalue of x is by definition an eigenvalue of the Blaschke tensor of x. x is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. Then the classification of Blaschke isoparametric hypersurfaces is natural and interesting in the MSbius geometry of submanifolds. When n = 4, the corresponding classification theorem was given by the authors. In this paper, we are able to complete the corresponding classification for n = 5. In particular, we shall prove that all the Blaschke isoparametric hypersurfaces in S^5 with more than two distinct Blaschke eigenvalues are necessarily Mobius isoparametric.Given an immersed submanifold x : M^M → S^n in the unit sphere S^n without umbilics, a Blaschke eigenvalue of x is by definition an eigenvalue of the Blaschke tensor of x. x is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. Then the classification of Blaschke isoparametric hypersurfaces is natural and interesting in the MSbius geometry of submanifolds. When n = 4, the corresponding classification theorem was given by the authors. In this paper, we are able to complete the corresponding classification for n = 5. In particular, we shall prove that all the Blaschke isoparametric hypersurfaces in S^5 with more than two distinct Blaschke eigenvalues are necessarily Mobius isoparametric.

关 键 词:Mobius form Blaschke eigenvalues Blaschke tensor Mobius metric Mobius second fundamental form 

分 类 号:O186.11[理学—数学] O186.12[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象