检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北电力大学能源与机械工程学院,吉林省吉林市132012
出 处:《化工学报》2009年第4期855-863,共9页CIESC Journal
基 金:国家自然科学基金项目(50706006)~~
摘 要:针对压差波动信号的非线性和非高斯特性,提出了一种基于高阶谱和核主元分析相结合的流型识别方法。通过对气液两相流压差波动信号的双谱分析,提取了不同流型下信号的非高斯特征,以双谱分析核主元数字特征提取流型的特征,最后利用最小二乘支持向量机对流型进行智能识别。实验结果表明,提取的核主元特征反映了两相流的流动状态,最小二乘支持向量机可以有效地识别水平管道内的4种典型流型,整体识别率达到95%,为流型识别提供了一种有效的方法。Aimed at the nonlinear and non-Gaussian characteristics of differential pressure fluctuation signals of gas-liquid two-phase flow, a flow regime identification method based on bispectrum and kernel principal component analysis (KPCA) was proposed. The non-Gaussian characteristics of differential pressure fluctuation signals of different flow regimes were extracted by using the bispectrum method. Then the kernel principal component numerical characteristics technology based on bispectrum analysis was used to extract flow regime characteristics. At last, least square support vector machine (LS-SVM) was introduced to intelligently identify flow regimes. The test results showed that bispectrum analysis was an extremely powerful tool for the analysis of nonlinear and non-Gaussian signals, and the extracted KPCA characteristics could reflect the flow state of two-phase flow. The LS-SVM could accurately identify four typical flow regimes of gas-water two-phase flow in the horizontal pipe. The whole identification accuracy was 95% for flow regime identification by using the new effective method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171