环己烯类神经氨酸酶抑制剂的定量构效关系研究  被引量:1

QSAR studies on influenza neuraminidase inhibitors of cyclohexenes

在线阅读下载全文

作  者:杨善彬[1,2] 杨云贵[1] 杨青林[3] 梁桂兆[2,4] 潘元[3] 舒茂[2,4] 李雷光[2] 李志良[2,3,4] 

机构地区:[1]宜宾学院化学与化工系,宜宾644000 [2]重庆大学生物工程学院/生物医学工程重庆市重点实验室,重庆400044 [3]重庆大学化学化工学院,重庆400044 [4]湖南大学化学生物传感与计量学国家重点实验室,长沙410082

出  处:《中国抗生素杂志》2009年第4期205-209,225,共6页Chinese Journal of Antibiotics

基  金:国家高技术研究发展计划(863计划)专题(批准号:2006AA02Z312);化学生物传感与计量学国家重点实验室(湖南大学)基金(批准号:2005012);重庆大学生物力学与组织修复工程创新引智基地(111计划)资助项目;宜宾学院制药工程创新团队基金(WD4)

摘  要:研究了37个环已烯类神经氨酸酶抑制剂结构与其抗流感活性的定量构效关系。采用本实验室提出的三维原子场全息作用矢量对环已烯类神经氨酸酶抑制剂进行结构参数化表征,采用逐步回归对变量进行筛选后运用偏最小二乘回归建模。训练集模型的复相关系数(R^2)、交互校验复相关系数(Q_(cum)~2)和拟合均方根误差(RMSEE)分别为0.862,0.575和0.4864,预测集RMSEP为0.4435,模型具有良好稳定性和预测能力。结果表明三维原子场全息作用矢量能较好表征该类分子结构信息,值得进一步推广应用。The quantitative structure-activity relationship( QSAR ) of 37 cyclohexene influenza neuraminidase inhibitors was studied. A newly developed three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) was used to describe the chemical structures of cyclohexene influenza neuraminidase inhibitors. After the structural characterization, the descriptors obtained were screened by step-wise multiple regression (SMR) then a model of 3D-HoVAIF descriptors and cyclohexene influenza neuraminidase inhibitors' activities were built with partial least square regression (PLS). The obtained model of training set with the cumulative multiple correlation coefficient (R2), cumulative cross-validated (Q^2cum) and the Root Mean Square Error of Estimation (RMSEE) were 0. 862, 0. 575 and 0. 4864 respectively. The Root Mean Square Error of Prediction(RMSEP) of test set was 0. 4435. It shows that the model had favorable stability and good prediction capability, and the 3D-HoVAIF is able to characterized the steric information efficiently, and this method is worthy of widespiead application.

关 键 词:三维原子场全息作用矢量 环己烯类神经氨酸酶抑制剂 定量构效关系 偏最小二乘回归 

分 类 号:R914.1[医药卫生—药物化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象