检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北工程大学不确定信息研究所,河北邯郸056038
出 处:《工程设计学报》2009年第2期88-92,102,共6页Chinese Journal of Engineering Design
基 金:国家自然科学基金资助项目(60474019);河北省自然科学基金资助项目(F2005000482)
摘 要:机构选型多级模糊评判的核心计算是实现隶属度转换;但是,现有隶属度转换方法包含冗余性,表现在指标隶属度中对目标分类不起作用的冗余部分也被用于计算目标隶属度.为此,用基于熵的数据挖掘方法,通过挖掘隐藏在各指标隶属度中关于目标分类的知识信息定义指标区分权;用区分权清除指标隶属度中对目标分类不起作用的冗余数值并提取有效值;有效值经指标重要性权重转化为可比值;用可比值计算目标隶属度实现隶属度转换.由此建立机构选型的改进模糊评判模型.Implementation of transforming membership degrees is the kernel computation in multilevel fuzzy evaluation of mechanism selection; but the existing algorithms contain redundancy and the redundant parts of the index membership degree, which are useless in objective classification, are involved in calculation of objective membership. Therefore, by using the entropy-based datamining method, through mining the knowledge information hiding in each index membership degree about the objective classification, index-distinguishing weight was defined. By using this weight, the redundant values in index membership degree but useless to objective classification were eliminated and the effective values were extracted. The effective ones were transformed into comparable values through importance weights, which were utilized to calculate objective membership degree to realize membership degree transformation. Based on the above, the improved fuzzy evaluation model of mechanism selection was established.
分 类 号:TH133.33[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222