Superparamagnetic Iron Oxide Labeling of Spinal Cord Neural Stem Cells Genetically Modified by Nerve Growth Factor-β  

Superparamagnetic Iron Oxide Labeling of Spinal Cord Neural Stem Cells Genetically Modified by Nerve Growth Factor-β

在线阅读下载全文

作  者:雷德强 赵洪洋 邓兴力 刘如恩 张方成 姚东晓 

机构地区:[1]Department of Neurosurgery,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology [2]Department of Neurosurgery,the First Hospital Affiliated to Kunming Medical College [3]Department of Neurosurgery,China-Japan Friendship Hospital

出  处:《Journal of Huazhong University of Science and Technology(Medical Sciences)》2009年第2期235-238,共4页华中科技大学学报(医学英德文版)

基  金:supported by a grant from the National Natural Sciences Foundation of China (No.30672151)

摘  要:This study established superparamagnetic iron oxide (SPIO)-labeled nerve growth fac-tor-β (NGF-β) gene-modified spinal cord-derived neural stem cells (NSCs). The El4 rat embryonic spinal cord-derived NSCs were isolated and cultured. The cells of the third passage were transfected with plasmid pcDNA3-hNGFβ by using FuGENE HD transfection reagent. The expression of NGFβ was measured by immunocytochemistry and Western blotting. The positive clones were selected, allowed to proliferate and then labeled with SPIO, which was mediated by FuGENE HD transfection reagent. Prussian blue staining and transmission electron microscopy (TEM) were used to identify the SPIO particles in the cells. The distinctive markers for stem cells (nestin), neuron (β-Ⅲ-tubulin), oligodendrocyte (CNPase) and astrocyte (GFAP) were employed to evaluate the differentiation ability of the labeled cells. The immunocytochemistry and western blotting showed that NGF-β was expressed in spinal cord-derived NSCs. Prussian blue staining indicated that numerous blue-stained particles appeared in the cytoplasma of the labeled cells. TEM showed that SPIO particles were found in vacuolar structures of different sizes and the cytoplasma. The immunocytochemistry demonstrated that the labeled cells were nestin-positive. After differentiation, the cells expressed β-Ⅲ-tubulin, CNPase and GFAP. It was concluded that the SPIO-labeled NGF-β gene-modified spinal cord-derived NSC were successfully established, which are multipotent and capable of self-renewal.This study established superparamagnetic iron oxide (SPIO)-labeled nerve growth fac-tor-β (NGF-β) gene-modified spinal cord-derived neural stem cells (NSCs). The El4 rat embryonic spinal cord-derived NSCs were isolated and cultured. The cells of the third passage were transfected with plasmid pcDNA3-hNGFβ by using FuGENE HD transfection reagent. The expression of NGFβ was measured by immunocytochemistry and Western blotting. The positive clones were selected, allowed to proliferate and then labeled with SPIO, which was mediated by FuGENE HD transfection reagent. Prussian blue staining and transmission electron microscopy (TEM) were used to identify the SPIO particles in the cells. The distinctive markers for stem cells (nestin), neuron (β-Ⅲ-tubulin), oligodendrocyte (CNPase) and astrocyte (GFAP) were employed to evaluate the differentiation ability of the labeled cells. The immunocytochemistry and western blotting showed that NGF-β was expressed in spinal cord-derived NSCs. Prussian blue staining indicated that numerous blue-stained particles appeared in the cytoplasma of the labeled cells. TEM showed that SPIO particles were found in vacuolar structures of different sizes and the cytoplasma. The immunocytochemistry demonstrated that the labeled cells were nestin-positive. After differentiation, the cells expressed β-Ⅲ-tubulin, CNPase and GFAP. It was concluded that the SPIO-labeled NGF-β gene-modified spinal cord-derived NSC were successfully established, which are multipotent and capable of self-renewal.

关 键 词:superparamagnetic iron oxide nerve growth factor spinal cord-derived neural stem cells 

分 类 号:R741.0[医药卫生—神经病学与精神病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象