从空间数据库发现聚类:一种基于数学形态学的算法  被引量:10

A Mathematical Morphology Based Algorithm for Discovering Clusters in Spatial Databases

在线阅读下载全文

作  者:邸凯昌[1,2] 李德仁[1,2] 李德毅[1,2] 

机构地区:[1]武汉测绘科技大学 [2]总参谋部第六十一研究所

出  处:《中国图象图形学报(A辑)》1998年第3期173-178,共6页Journal of Image and Graphics

基  金:国家自然科学基金

摘  要:聚类算法能从空间数据库中直接发现一些有意义的聚类结构而不需要背景知识,是空间数据发掘和知识发现的重要手段。在分析已有聚类算法的基础上,提出了一种基于数学形态学的聚类算法,该算法能够处理任意形状的聚类,采用启发式方法自动确定最优聚类数。同时,该算法也可以在矢量型空间数据库中得到实现。试验表明算法是可行和有效的,且能处理存在噪音的数据。Cluster analysis is an important technique for data mining and knowledge discovery in spatial databases. Its main advantage is the ability to find interesting structures or clusters directly form the spatial data without using any background knowledge. Some available algorithms are reviewed and a mathematical morphology based clustering algorithm (MMC) is presented in this paper. Clusters with arbitrary shape can be discovered by using MMC algorithm, and the optimal cluster number is automatically determined by a heuristic method. The algorithm can be implemented in vector databases as well as in raster databases. The experiments show that the new algorithm is feasible and effective for discovering clusters in spatial databases and is robust when clustering in databases with noise.

关 键 词:聚类算法 数学形态学 空间数据库 模式识别 

分 类 号:O235[理学—运筹学与控制论] TP311.13[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象