检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学系统工程研究所,湖北武汉430074 [2]武汉科技大学机械学院,湖北武汉430081
出 处:《控制理论与应用》2009年第4期459-462,共4页Control Theory & Applications
基 金:国家自然科学基金资助项目(60474077);教育部新世纪人才支持计划项目(05653)
摘 要:采用多智能体技术构建虚拟企业任务调度模型,并对基于该模型的任务调度运作过程进行说明.针对调度优化问题,以资源智能体承担的生产任务为研究对象,综合考虑生产任务之间的时序逻辑关系、作业时间及资源自身已确定的生产任务等影响因素,建立以生产延续时间最小为目标的优化模型,给出粒子群优化求解算法.应用实例及数字仿真验证了模型及优化算法有效性。By means of multi-agent technology, the task-scheduling model in a virtual enterprise (VE) is presented, and the operation process of task-scheduling in VE based on the above model is explained. In the optimization of task-scheduling, the production tasks of each resource agent are taken as the research objective; and the model for taskscheduling in VE for minimizing the production duration is established by comprehensively considering the logical relation among subtasks, the operation time of each subtask, the assigned production activities of each resource agent, etc. The particle swarm optimization (PSO) algorithm is employed for the problem-solving. Finally, a real example and the numerical simulation show that this task-scheduling model in VE and the optimization algorithm are effective.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.79.94