检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江海洋学院数理与信息学院,浙江舟山316004
出 处:《计算机工程与设计》2009年第7期1738-1741,共4页Computer Engineering and Design
基 金:浙江省科技厅重大科技专项(优先主题)社会发展基金项目(2008C13068);浙江省教育厅科研基金项目(20070330)
摘 要:为了实现鱼病的快速和大批量诊断的目的,将粗糙集理论和神经网络紧密结合建立一种新的高效鱼病诊断模型。利用粗糙集进行知识获取,即把鱼病的典型案例作为样本空间形成"症状—疾病"的决策表,然后根据粗糙集的知识简化方法,去掉冗余的属性和样本。利用性能优良的模糊kohonen聚类网络进行聚类分析,最后形成鱼病的分类规则,新的鱼病就可通过此规则进行诊断。该模型充分融合了粗糙集强大的规则提取能力和神经网络优良的分类能力,实验证明模型具有很好的分类效率,可以实现鱼病的快速诊断。In order to achieve the rapid and mass diagnosis of fish diseases, a new high-performance model is set up, which closely connects rough set and neural network. First, the rough set is used for access to knowledge, that is, the typical cases of fish diseases are regarded as sample room for the formation of the decision-making table of the "symptoms--disease". Next, based on rough set of simplified method of knowledge, redundant properties and samples are removed. Then, the fine performance of the fuzzy kohonen clustering network is used to analyze clustering; and finally fish diseases classification rules are formed. The model integrate the strong extracting capabilities of rough set and the excellent classifying ability of neural network, and is proved experimentally to be efficient in classification and rapid in fish diseases diagnosis.
关 键 词:粗糙集 模糊KOHONEN聚类网络 鱼病诊断 条件属性 症状集
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.102.106