检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Sriparna Saha Sanghamitra Bandyopadhyay
机构地区:[1]Machine Intelligence Unit,Indian Statistical Institute,Kolkata,India
出 处:《Journal of Computer Science & Technology》2009年第3期544-556,共13页计算机科学技术学报(英文版)
摘 要:In this paper, at first a new line-symmetry-based distance is proposed. The properties of the proposed distance are then elaborately described. Kd-tree-based nearest neighbor search is used to reduce the complexity of computing the proposed line-symmetry-based distance. Thereafter an evolutionary clustering technique is developed that uses the new linesymmetry-based distance measure for assigning points to different clusters. Adaptive mutation and crossover probabilities are used to accelerate the proposed clustering technique. The proposed GA with line-symmetry-distance-based (GALSD) clustering technique is able to detect any type of clusters, irrespective of their geometrical shape and overlapping nature, as long as they possess the characteristics of line symmetry. GALSD is compared with the existing well-known K-means clustering algorithm and a newly developed genetic point-symmetry-distance-based clustering technique (GAPS) for three artificial and two real-life data sets. The efficacy of the proposed line-symmetry-based distance is then shown in recognizing human face from a given image.In this paper, at first a new line-symmetry-based distance is proposed. The properties of the proposed distance are then elaborately described. Kd-tree-based nearest neighbor search is used to reduce the complexity of computing the proposed line-symmetry-based distance. Thereafter an evolutionary clustering technique is developed that uses the new linesymmetry-based distance measure for assigning points to different clusters. Adaptive mutation and crossover probabilities are used to accelerate the proposed clustering technique. The proposed GA with line-symmetry-distance-based (GALSD) clustering technique is able to detect any type of clusters, irrespective of their geometrical shape and overlapping nature, as long as they possess the characteristics of line symmetry. GALSD is compared with the existing well-known K-means clustering algorithm and a newly developed genetic point-symmetry-distance-based clustering technique (GAPS) for three artificial and two real-life data sets. The efficacy of the proposed line-symmetry-based distance is then shown in recognizing human face from a given image.
关 键 词:unsupervised classification CLUSTERING symmetry property line-symmetry-based distance KD-TREE genetic algorithm face recognition
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229