检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庄进发[1] 罗键[1] 彭彦卿[1] 黄春庆[1] 吴长庆[1]
出 处:《计算机集成制造系统》2009年第4期777-785,共9页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(60704043)~~
摘 要:为解决不可识别故障诊断中无法有效定位的问题,提出一种基于改进随机森林的故障诊断方法。该方法通过改进决策树的bagging方式,采用条件概率指数进行决策树的无偏节点分裂,并以权重投票法综合决策树的分类结果。在此基础上,利用变量重要性测量来获取辅助故障定位的故障原型指数,从而较好地弥补了随机森林和传统机器学习在故障诊断中的不足和局限性。最后在一个标准数据集和田纳西-伊斯曼故障诊断的问题上进行验证,结果证明了该方法的有效性与可行性。To solve the problem of inefficient determining fault location in unidentified fault diagnosis of traditional machine-learning technologies, a fault diagnosis method based on modified random forests was proposed. Firstly, random decision trees were created via modified algorithm of bagging and unbiased split selection based on conditional probability index so as to construct random forests. Secondly, weighted voting was applied to combine the prediction of the decision trees. Then, fault prototypes were computed through the measurement of variable-importance in random forests, which assisted in determining the fault location. Finally, the proposed method was illustrated and documented thoroughly in an application of standard dataset and Tennessee Eastman Process (TEP) fault diagnosis. The results verified the presented approach's feasibility and effectiveness.
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117