检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《黑龙江大学自然科学学报》2009年第2期194-200,共7页Journal of Natural Science of Heilongjiang University
基 金:Supported by the Natural Science Foundation of Heilongjiang Education Committee (15011014);Fund of Heilongjiang University for Younth Teachers(QLZ00501)
摘 要:设F是域,m≥2是正整数,Mn(F)表示域F上所有n×n矩阵构成的线性空间,sln(F)表示Mn(F)的包含所有迹零矩阵的子空间。若线性映射Φ:slm(F)→slm(F)满足Φ(sl1m(F))slm1(F),则称其为线性秩1保持,其中sl1m(F)定义slm(F)的包含所有秩1矩阵的子集。通过使用数学归纳法证明了:Φ:slm(F)→slm(F)是可逆的线性秩1保持的充要条件是存在c∈F*和可逆的M∈Mm(F)使得Φ(X)=cMXM-1,X∈slm(F)或Φ(X)=cMXTM-1,X∈slm(F).Suppose F is a field and m is a positive integer with m ≥ 2. Let Mm (F) be the linear space of all m x m matrices over F, and let slm (F) be the subspaee of Mm (F) consisting of all zero - trace matrices. A linear map Ф: slm (F) →slm (F) is termed a rank - 1 preserver if Ф ( Sl^1m (F) ) sl^1m ( F), where Sl^1 m (F) denotes the subset of slm (F) consisting of all rank - 1 matrices. It is shown by using an inductive technique that Ф : slm (F) →slm (F) is an invertible linear rank - 1 preserver if and only if there exist c ∈ F ^* and nonsingular M ∈ Mm ( F ) such that Ф (X) = cMXM^- 1 for any X ∈ slm (F) or = cMX^T M^-1 for any X ∈ slm (F).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7