乳腺动态增强MRI及其后处理技术在乳腺肿瘤诊断中的应用  被引量:11

Application of dynamic contrast enhancement MRI and post-processing technique for diagnosis of breast cancer

在线阅读下载全文

作  者:彭康强[1,2] 黄子林[1,2] 谢传淼[1,2] 陈林[1,2] 欧阳翼[1,3] 郑庆生[1,2] 张岩[1,2] 何浩强[1,2] 吴沛宏[1,2] 

机构地区:[1]华南肿瘤学国家重点实验室,广东广州510060 [2]中山大学肿瘤防治中心医学影像及介入中心,广东广州510060 [3]中山大学肿瘤防治中心放射治疗科,广东广州510060

出  处:《癌症》2009年第5期549-554,共6页Chinese Journal of Cancer

摘  要:背景与目的:乳腺癌常用诊断手段主要包括体格检查、钼靶、超声等,MRI技术被视为乳腺疾病诊断最具有潜力的一种检查手段。本研究旨在探讨乳腺动态增强MRI及其后处理技术的优越性在临床诊断中的应用。方法:选取2006年5月至2007年9月在中山大学肿瘤防治中心行MRI检查的乳腺疾病初诊病例30例,全部行MRI平扫和动态增强扫描,并通过工作站分别进行减影处理、动态曲线绘制、三维立体重建等后处理。选取病灶远隔部位正常组织为对照,计算最大线性斜率比值。结果:本组30例患者共49个病灶,MRI诊断正确率93.3%。结论:乳腺MRI是一种敏感性和准确性较高的检查方式,动态增强扫描、减影处理、时间-信号曲线的处理、三维立体重建后处理以及最大线性斜率比值,均有助于乳腺病灶的正确诊断。Background and Objective.. Magnetic resonance imaging (MRI), an advanced non-invasive technique, is regarded as one of the potential modalities in the diagnosis of breast cancer. This study was to investigate the application of dynamic contrast enhancement MRI and 3D reconstruction images in diagnosing breast tumors. Methods: From May 2006 to September 2007, 30 patients with breast diseases were scanned with MRI in Sun Yat-sen University Cancer Center. MR plain scans, dynamic contrast enhancement scans were performed, and 3D reconstruction images were obtained. The normal breast tissue was used as control, and the maximum slope ratio was calculated. Results: Forty-nine lesions were found in 30 patients, with an accuracy rate of 93.3%. Conclusion: MRI scan is an effective and specific modality for the diagnosis of breast diseases with high sensitivity and accuracy. Dynamic contrast enhancement MRI, image subtraction, time-signal intensity curve, 3D reconstruction images and the maximum slope ratio are helpful to make the correct diagnosis of breast lesions.

关 键 词:乳腺肿瘤 MRI 动态增强 后处理技术 诊断 

分 类 号:R737.9[医药卫生—肿瘤] R730.44[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象